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Incremental Maintenance ofExternally Materialized ViewsMartin Staudt Matthias JarkeRWTH Aachen, Informatik V, Ahornstr. 55, D-52056 Aachen, Germanyfstaudt,jarkeg@informatik.rwth-aachen.de
AbstractWith the advent of the Internet, access todatabase servers from autonomous clients willbecome more and more popular. In this paper,we propose a monitoring service that could beo�ered by such database servers, and presentalgorithms for its implementation. In contrastto published view maintenance algorithms, wedo not assume that the server has access tothe original materialization when computingdi�erential view changes to be noti�ed. Wealso do not assume any database capabilitieson the client side and therefore compute pre-cisely the required di�erentials rather thanjust an approximation, as is done by cachecoherence techniques in homogeneous client-server databases. The method has been im-plemented in ConceptBase, a meta data man-agement system supporting an Internet-basedclient-server architecture, and tried out insome cooperative design applications.1 IntroductionFacilitated by the Internet, wide-area access todatabase servers by autonomous clients (which mayor may not have local databases) is becoming moreand more popular (�gure 1). To reduce applicationprogramming e�ort, such clients demand more sophis-ticated services than the simple read and write trans-actions o�ered by current standards such as RDA.Permission to copy without fee all or part of this material isgranted provided that the copies are not made or distributed fordirect commercial advantage, the VLDB copyright notice andthe title of the publication and its date appear, and notice isgiven that copying is by permission of the Very Large Data BaseEndowment. To copy otherwise, or to republish, requires a feeand/or special permission from the Endowment.Proceedings of the 22nd VLDB ConferenceMumbai(Bombay), India, 1996

An obvious candidate is a monitoring service. Theclient does not only request the initial answer to acertain query but also noti�cations about changes inthis answer over an extended period of time, with aspeci�ed quality of service in terms of precision andactuality.Database monitoring is not a new problem. Even incentral databases, it is needed for notifying applicationprograms or end-users about integrity violations [1], orto assist users in supervising complex processes (stocktrading, power plants, ...). A more recent example isgroup awareness in cooperative engineering: design-ers working on a certain aspect of a product shouldbe made aware of concurrent changes in requirementsor by other designers. Yet another step towards theopen electronic Internet market is change propagationin data warehousing [23, 10].Traditional database systems leave the responsibil-ity of keeping informed about updates largely to theclient. Since the client cannot know what changes havehappened, it must repeat queries in a polling mode.Even worse, although the server must re-compute thewhole query each time, the client usually must in addi-tion compute the di�erentials to highlight them to theend-user, thus duplicating a lot of DBMS functionali-ties.Active database technology o�ers a partial solu-tion by triggers that can produce e�ects outside thedatabase. Distributed programming languages suchas Java moreover allow the server to add certain func-tionalities to client programs, e.g. ensuring that theycan accept change noti�cations and relate them to theoriginal query. Recently, our group has also developeda `coherency index' and corresponding extensions todistributed transaction management by which timeli-ness of service can be tailored to customer wishes [3].However, the question how to compute the neces-sary changes is not answered by these base technolo-gies if the view de�nition is reasonably complex or ifviews are de�ned on top of each other (possibly withrecursion). The corresponding trigger programs be-come so complex that it is not conceivable they couldPage 1
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Figure 1: Client-server architecture for database applicationsbe written by client developers.The published view maintenance algorithms [5] donot fully solve the monitoring problem since they as-sume that views are materialized logically within thedatabase, either within the server or by endowing theclient with DBMS capabilities plus a local databasecache (AP3 in �gure 1). Such a cache gives the sys-tem a lot of 
exibility when to propagate changes, andwith what precision [15, 8], but is easily possible onlywithin a homogeneous environment. Moreover, it justshifts the problem from the client-server communica-tion to the database-interface communication withinthe client.In this paper, we present two related algorithmsfor a monitoring service. The �rst one, reported insection 3, assumes that the server maintains a localview materialization in addition to the external one.It achieves the precision of state-of-the-art incremen-tal view maintenance techniques by a purely declara-tive rule program, rather than resorting to proceduralcomponents [6] or meta predicates [9].This declarative approach is important because itis a prerequisite for the second algorithm in which theserver only remembers the view de�nition to be moni-tored (section 4); we have not found a solution for thisproblem in the literature. The algorithm neither main-tains a server-side materialization nor has it access tothe external client-side materialization. It also elimi-nates the need for client-side computing of view di�er-entials as these are precisely computed and sent by theserver. The basic idea is to further rewrite the mainte-nance rules into trigger rules that selectively re-derive

the pieces of an externally materialized view needed forcomputing the client-view di�erentials, using a stan-dard DBMS query evaluator. As a consequence, theapproach advocated here could also be used by a medi-ator that operates on top of a collection of distributedsource databases [22].The embedding of the algorithm in a full monitoringservice is illustrated in section 5, by brie
y describingits implementation and initial application experiencesin ConceptBase, a meta database management systemsupporting a deductive object data model and oper-ating in an Internet-based client-server architecture.Section 6 discusses related work and open issues.2 Notations and Example2.1 Notation and PrerequisitesThe algorithms in this paper are presented in a Data-log formalism [21] although they apply equally to otherextended relational database languages1. A deductivedatabase consists of a set of base relations EDB and aset of rules de�ning intensional relations IDB. Theserules are of the formp( ~X) :� l1( ~X1); : : : ; ln( ~Xn)where p is a predicate symbol corresponding to arelation in IDB, the li are literals of the form ri or : rifor relations ri and ~X , ~Xi are non disjunct sequencesof constants and variables. For readability, we omitvariables in the following. We assume that all rulesare safe: variables occuring in the rule head occur in1For example, our implementation uses the deductive objectlanguage Telos [12]. Page 2
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Figure 2: (a) Changes in the database (b) Changes in the viewthe rule body, too, and variables appearing in negatedpredicates are bound through some additional positiveliterals in the rule body.Intensional relations may represent views of appli-cations; in this case, we call the derivation rules viewde�nitions. Query optimization algorithms such as themagic set transformation [21] convert these view de�-nitions into sets of query rules which are more suitedfor an e�cient bottom-up query evaluation procedure.An intensional relation is materialized if its derivedextension is stored in the database.Update transactions on base relations have to bepropagated through the rules towards the view rela-tions in order to provide noti�cations to the a�ectedclient applications. The base data updates for a re-lation r are assumed to be available as relations rinsand rdel. They are applied to r after the process ofcomputing their consequences on derived views. Ingeneral, the set of views that has to be checked forchanges is based only on a restricted subset of the IDBrules that can be determined easily, e.g. by a rule/goalgraph [21].2.2 Incremental View Maintenance: An Ex-ampleThe following simple scenario illustrates the problemof maintaining views on the database managed by ex-ternal client tools. An extensional database relationedge represents a directed graph, and a view main-tained by a graph display tool contains the transitiveclosure of this graph. The view de�nition de�nes anintensional relation closure by two Datalog rules:R1 : closure(x; y) :� edge(x; y):R2 : closure(x; y) :� edge(x; z); closure(z; y):A sample extension of edge is shown in �gure 2 (a).It has a subgraph G0 where g is the only node that isconnected with nodes occuring in G0. G0 is interpreted

as the rest of relation edge which is not touched by up-date operations. G0 may be a very large graph and thecomputation of its transitive closure G0� is expensive.When starting up, the graph display tool asks thedatabase to compute the extension of closure(x; y). Itloads the result into its memory, transforms it into itslocal data structure and displays it on the screen as in�gure 2 (b).Now consider the following updates on the baserelation edge: a delete operation for the tuplefedge(b; c)g; and an insert operation with the tuplefedge(h; d)g.The recent literature on incremental view mainte-nance seems to converge on a three-step consensus pro-cedure [9, 6] that computes view di�erentials for a widerange of view de�nitions, including negation and ag-gregate functions:� estimate the consequences of deletionsThe deletion cuts o� the relationship betweennodes b and c which results in an elimination ofthe links f(a; c); (a; g); (b; c); (b; g)g.� prune those derived deletions for which al-ternative derivations existDespite of the cut link (b; c) e and f are still con-nected with c and g since there are additional cor-responding paths in the graph via node d.� add the consequences of insertionsThe insertion yields three new linksf(h; d); (h; c); (h; g)g.Some special cases allow for faster counting algo-rithms, some complex cases (e.g. duplicates) requireadditional treatment. While most formal results havebeen developed in a Datalog context, results havealso been transfered to active relational databases [2],multi-databases and data warehouses [23, 10]. Page 3
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3 Incremental Maintenance of Materi-alized Views: A Declarative SolutionIn this section, we present the �rst group of algorithmswhich assumes that views are in fact materialized notonly in the external client but also in the server.Our algorithm (section 3.1) follows the three-stepapproach just shown. However, it rewrites the origi-nal view de�nitions to a purely declarative program ofmaintenance rules rather than one that is mixed withprocedural steps [6]. We also need less assumptionsthan [9] who uses meta predicates for control and ad-ditionally requires not only the old state but also thenew state of all extensional and intensional relationsto be completely available.3.1 Generating Maintenance RulesGenerating view maintenance rules requires rewritingthe original view de�nitions in order to incorporatedi�erentials in the rule bodies and heads. A givenview de�nition(O) : p :� r1; : : : ; rn:is rewritten to a set of maintenance rules whose eval-uation will compute the set of implicit insertions anddeletions to be propagated. The rules are formulatedin a way that mimicks the rough algorithm mentionedin the previous section.The �rst subset of maintenance rules consists of thefollowing rules (1 � i � n):(Di) : pdel :� r1; : : : ; ri�1; rdeli ; ri+1; : : : ; rn:(N1) : pnew :� p;:pdel:The (Di) rules derive all possible deletions of tuplesin relation p caused by deleted tuples in body relations.If ri is a base predicate, rdeli contains the explicitlydeleted facts in ri otherwise it contains a superset ofthe tuples to be deleted in ri due to deletions causedby other rules. The rule (N1) computes those tuplesthat de�nitely remain for p in the new database state.For all base predicates among the ri a rule (N 0i ) doesexactly the same2:(N 0i) : rnewi :� ri;:rdeli :Rule R checks which tuples in pdel have alterna-tive derivations on the \minimal" new database stategained so far. Those tuples are put back into pnew byrule (N2).(R) : pred :� pdel; rnew1 ; : : : ; rnewn :(N2) : pnew :� pred:The next rules propagate insertions of base relationtuples towards the intensional relations. This is doneby ordinary semi-naive rewriting, i.e. by constructingrules (Ii) that join new tuples inserted into one bodyrelation with full extensions of all others. The newlyderived insertions in addition have to be put by (N3)2A corresponding rule for intensional predicates is generatedwhen compiling one of their de�ning rules.

into the new state of p. The same must also be donefor all base predicates among the ri by rules (N 00i ).(Ii) : pins :� rnew1 ; : : : ; rnewi�1 ; rinsi ; rnewi+1 ; : : : ; rnewn :(N3) : pnew :� pins:(N 00i ) : rnewi :� rinsi :Finally, the net insertions and deletions have to becomputed by relations pplus and pminus. Those tu-ples with only additional derivation paths are no real(but idle) insertions. Tuples loosing a derivation pathbut still being supported by others or even newly in-troduced ones are no real (but phantom) deletions.Note, that the other two types of update abnormali-ties, namely idle deletions and phantom insertions arealready prevented by rule (N1) resp. may arise in caseof negated body predicates only. The latter case isdiscussed below and can be overcome by strati�cationand a suited initialization of the ins and del predicateson each evaluation layer.(E1) : pplus :� pins;:p:(E2) : pminus :� pdel;:pins;:pred:Example 1 (Generating view maintenance rules)We continue the example from section 2.2 by rewrit-ing rule R1 as follows:(D1) : closuredel(x; y) :� edgedel(x; y):(N1) : closurenew(x; y) :� closure(x; y);:closuredel(x; y):(N 01) : edgenew(x; y) :� edge(x; y);:edgedel(x; y):(R) : closurered(x; y) :� closuredel(x; y); edgenew(x; y):(N2) : closurenew(x; y) :� closurered(x; y):(I1) : closureins(x; y) :� edgeins(x; y):(N3) : closurenew(x; y) :� closureins(x; y):(N 001 ) : edgenew(x; y) :� edgeins(x; y):(E1) : closureplus(x; y) :� closureins(x; y);:closure(x; y):(E2) : closureminus(x; y) :� closuredel(x; y);:closureins(x; y);:closurered(x; y):Transformation of rule R2 yields the following ad-ditional rules3(D1) : closuredel(x; y) :� edgedel(x; z); closure(z; y):(D2) : closuredel(x; y) :� edge(x; z); closuredel(z; y):(R) : closurered(x; y) :� closuredel(x; y); edgenew(x; z);closurenew(z; y):(I1) : closureins(x; y) :� edgeins(x; z); closurenew(z; y):(I2) : closureins(x; y) :� edgenew(x; z); closureins(z; y):2Algorithm 1 summarizes the transformations dis-cussed so far.Algorithm 1 (Generating maintenance rules)Input: A rule of the form (O) : p :� r1; : : : ; rn:Output: A set M of maintenance rules for (O).3The rules (Ni),(N 0i),(N 00i ) and (Ei) are the same for bothR1 and R2. Page 4
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beginM := ;;for i:= 1 to n dogenerate rules (Di) and (Ii);M := M [ f(Di); (Ii)g od;for j:= 1 to nif rj is base relation then dogenerate rules (N 0j) and (N 00j );M := M [ f(N 0j); (N 00j )g odgenerate rules (N1); (N2); (R); (N3); (E1); (E2);M := M [ f(N1); (N2); (R); (N3); (E1); (E2)g;return Mend 2The following theorem shows that evaluating therewritten rules generated by algorithm 1 is a soundand complete procedure for computing the di�eren-tials between the database states before and after anextensional update operation takes place.Theorem 1 Let Sold and Snew be the old resp. newdatabase state concerning a given set of base data up-dates. Moreover, assume Soldp and Snewp to be thetuples belonging to a relation p, where Soldp is mate-rialized for each p as its extension. Then for eachp the evaluation of the rules generated by algorithm1 yields the exact positive and negative di�erentialsSplusp and Sminusp as extension of pplus and pminussuch that Snew = Sold n Sminus [ Splus and Sminus �Sold ^ Sold \ Splus = ; where Splus := Sp Splusp andSminus := Sp Sminusp .Proof. The proof is given in [17]. 23.2 Evaluation with Access to View CachesThe maintenance rules in example 1 make obvious thatit is necessary to access the old contents of closurebefore the base data update operations took place.Bottom-up evaluation approaches like [6] therefore re-quire that the intensional relations involved are com-pletely materialized. The view maintenance processthen consists of an evaluation of the generated mainte-nance rules, without using the initial view de�nitions.Some of the generated rules contain negated predi-cates in the body even though the original rules werepure Datalog rules. For evaluating these rules thepredicates have to be partitioned into strata such thatno two predicates in one stratum depend negatively oneach other and predicates may only called negativelyby predicates of a higher stratum. Note, that algo-rithm 1 guarantees strati�ability because the transfor-mation itself keeps this property and the newly intro-duced predicates may not cause side e�ects with otherrules. The evaluation proceeds stratum-by-stratumstarting with the extensional predicates.

Example 2 (Evaluating view maintenance rules)For our example the following strata can be ob-tained:S0 = fedge; closure; edgedel; edgeinsgS1 = fclosuredel; edgenewgS2 = fclosurenew; closurered; closureins; closureplusgS3 = fclosureminusgLet edge = f(f; e); (e; d); (e; a); (a; b); (d; c); (b; c);(c; g)g [ edge0 as in subsection 2.2 where edge0 (withclosure edge0�) represents the independent subgraphG0 (G0�, resp.). The transitive closure of edge is therelation closure as displayed in �gure 2. The exten-sional update relations are given by edgedel = f(b; c)gand edgeins = f(h; d)g.S1:It. 1: closuredel := f(b; c); (b; g)gedgenew := f(f; e); (e; d); (e; a); (a; b); (d; c);(c; g)gIt. 2: closuredel := closuredel [ f(a; c); (a; g)gIt. 3: closuredel := closuredel [ f(e; c); (e; g)gIt. 4: closuredel := closuredel [ f(f; c); (f; g)gS2:It. 1: closurenew = f(c; g); (d; g); (d; c); (e; d); (e; a);(e; b); (f; e); (f; a);(f; b); (f; d)g [ edge0�closureins := f(h; d); (h; c); (h; g)gIt. 2: closurered = f(e; c); (e; g)gclosurenew := closurenew [ f(e; c); (e; g)gclosureplus := f(h; d); (h; c); (h; g)gIt. 3: closurered := closurered [ f(f; c); (f; g)gclosurenew := closurenew [ f(f; c); (f; g)gS3: closureminus(x; y) := f(a; c); (a; g); (b; c);(b; g)gHence, the result is the same as in �g. 2(b). 24 Incremental View Maintenance withRederivation on Demand: The RoDAlgorithmWe now turn to the case where the view is material-ized only externally. Change propagation in this caserequires partial re-derivation of the externally materi-alized views on demand. To achieve this, we furtherrewrite the maintenance rules from section 3 into a setof triggers. While section 4.1 describes these steps forstandard Datalog section 4.2 shows that adding nega-tion is not a major problem. Since view maintenanceand deductive query processing can both handle ag-gregate functions like negation [6, 11], our approachcovers a fairly large class of view de�nition languages.An evaluation algorithm that jointly exploits the main-tenance and the query rules for view maintenance atruntime is presented in section 4.3. Page 5
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4.1 Rederivation on Demand: RoDFor evaluating rules (Di); (R); (Ii); (E1), it is necessaryto access both the extensional and the intensional rela-tions of the old database state (either directly or indi-rectly). If the view caches are not accessible, we need afurther transformation of the maintenance rules whichrederives the relevant parts of the intensional relationson demand.The basic idea is similar to the supplementarymagic set algorithm [21]: we need a triggering fact ineach rule that enables �ring and propagates constants.The magic set algorithms employ magic predicates forthis purpose. For maintenance rules, this role can beplayed by the newly introduced update predicates pdeland pins.4.1.1 Rewriting deletion rulesStarting with a rule(Di) : pdel :� r1; : : : ; ri�1; rdeli ; ri+1; : : : ; rn:the insertion of tuples into rdeli means instantiat-ing the arguments of rdeli and of all predicates rj thatshare variables with rdeli . Hence, their bindings haveto be propagated from right to left towards r1, as wellas from left to right towards rn. This propagation cor-responds to a computation of joins in a given order4.The join results for each (Di) are expressed as supple-mentary derived relations:(Di�1i ) : supIi�1 :� ri�1; rdeli :(Di�2i ) : supIi�2 :� ri�2; supIi�1:: : :(D1i ) : supI1 :� r1; supI2:(Di+1i ) : supIi+1 :� rdeli ; ri+1:(Di+2i ) : supIi+2 :� supIi+1; ri+2:: : :(Dni ) : supIn :� supIn�1; rn:Finally, the two \streams" from rdeli to r1 and to rnhave to be joined:(Dii) : pdel :� supI1; supIn: (if j 62 f1; ng)pdel :� supIn: (if j = 1)pdel :� supI1: (if j = n)Informally, the head arguments of each Dji (j 6=i) are those variables that do not occur further left(j < i) or right (j > i) with respect to ri and are notneeded for performing the �nal join. More preciselythe arguments A of supIj are given as follows:if j < i� 1 A contains all variables v of rj andsupIj+1 with 9i<k�n v appears in rkor 91�k<j v appears in rk or v ap-pears in pdel4As the example at the end of this section shows, almost norewriting is necessary when n = 1 or n = 2. The adaption ofrewriting is obvious and not discussed in detail for space reasons.

if j > i+ 1 A contains all variables v of supIj�1and rj with 91�k<i v appears in rkor 9j<k�n v appears in rk or v ap-pears in pdelif j = i� 1 A contains all variables v of rj andrdeli with 9i<k�n v appears in rkor 91�k<i�1 v appears in rk or v ap-pears in pdelif j = i+ 1 A contains all variables v of rdeli andrj with 91�k<i v appears in rkor 9i+1<k�n v appears in rk or v ap-pears in pdelThe magic-set transformation of a ruler : �g1; : : : ; gnintroduces so-called magic predicates m gi for each in-tensional body predicate gi that a) propagate variablebindings from other body literals and b) initiate thederivation of all relevant tuples of gi satisfying thesebindings. This is done by inserting the magic predi-cates m gi as a kind of guard in each rule de�ning gi,and by generating additional magic rules (withm gi asconclusion) that �re whenever a subset of gi is neededfor some join computation.We assume that the original view de�nitions havealready been transformed to query rules with the sup-plementary magic-set algorithm. In order to have therelevant tuples in rj of the old database state avail-able for the maintenance rules (Dji ), we have to gener-ate further magic rules (M jDi) that trigger the de�ningquery rules for each rj . The query rules can then de-rive exactly the needed set of tuples, using a standardDBMS query processor to compute the joins5.The right hand side of each magic rule consistsof the join result gained from the preceding subgoalswhich is intended to be joined with rj . The magicpredicate m rj at the left hand side takes over onlythose arguments from rj that are either constants orvariables appearing and bound by the right hand side.As usual the m rj are adorned, i.e. marked with apattern consisting of a sequence of b's and f 's for eachposition in rj depending on whether the argument isleft out (f) or not (b).(M i+1Di ) : m ri+1 :� rdeli(M i�1Di ) : m ri�1 :� rdeli(M i�2Di ) : m ri�2 :� supi�1: : :(M1Di) : m r1 :� sup2(M i+2Di ) : m ri+2 :� supi+1: : :(MnDi) : m rn :� supn�1These magic rules ensure that only those parts ofthe (old) extensions of rj are derived that are relevant5Note, that for the extensional relations among the rj magicrules are of course not required since they are directly accessible.Page 6
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for the join with rdeli . As a consequence evaluating therules(N1) : pnew :� p;:pdel:(N 0i) : rnewi :� ri;:rdeli :yields only a partial extension of p and ri in the newdatabase state pnew and rnewi respectively.4.1.2 Rewriting rederivation rulesThe rederivation step (using rule R) for tuples thathave an alternative derivation path starts with the ex-isting new partial extensions pnew and rnewj .(R) : pred :� pdel; rnew1 ; : : : ; rnewn :(N2) : pnew :� pred:However, it may happen that the join between tu-ples of the overestimate pdel requires materializationof additional tuples from the old states of p and theri. Therefore, we need a triggering mechanism whichpropagates bindings from pdel to the rnewi predicates.This can be reached by rewriting (R) as follows:(R1) : supII1 :� pdel; rnew1 :(R2) : supII2 :� supII1 ; rnew2 :: : :(Rn�1) : supIIn�1 :� supIIn�2; rnewn�1:(Rn) : pred :� supIIn�1; rnewn :Again we have to ensure that all tuples needed tojoin supIIj�1 and rnewj are available in rnewj . This can bedone by rederiving the candidate tuples from the olddatabase state, i.e. in rj . This derivation is initiatedby corresponding magic rules (M jR):(M1R) : m r1 :� pdel:(M2R) : m r2 :� supII1 :: : :(MnR) : m rn :� supIIn�1Rules (N1) and (N 0i) then copy all tuples from rjthat de�nitely remain in the new database state intornewj . The overestimate of deletions rdelj used by theserules which leads to potentially missing tuples6 forrnewj is corrected by rule (N2) generated for the rulesde�ning rj .4.1.3 Rewriting insertion rulesThe next step of rewriting the maintenance rules con-cerns the rule set (Ii) which incrementally propagatesthe insertions. As already mentioned the rewritingfrom the view de�nition (O) to the set (Ii) is ex-actly standard semi-naive rewriting and has now tobe supplemented by corresponding magic-set transfor-mations that are essentially the same as the transfor-mations for the rule set (Di) with the di�erence thatthe body literals now access the new database state.(Ii�1i ) : supIIIi�1 :� rnewi�1 ; rinsi :(Ii�2i ) : supIIIi�2 :� rnewi�2 ; supIIIi�1:: : :(I1i ) : supIII1 :� rnew1 ; supIII2 :6Of course only if a rule for rj exists.

(Ii+1i ) : supIIIi+1 :� rinsi ; rnewi+1 :(Ii+2i ) : supIIIi+2 :� supIIIi+1; rnewi+2 :: : :(Ini ) : supIIIn :� supIIIn�1; rnewn :(Iii ) : pins :� supIII1 ; supIIIn :Since some necessary tuples may be not available inthe partially new states rnewi , we have again to rederiveadditional parts of the old state through suited magicrules (M jIi):(M i+1Ii ) : m ri+1 :� rinsi(M i�1Ii ) : m ri�1 :� rinsi(M i�2Ii ) : m ri�2 :� supIIIi�1: : :(M1Ii) : m r1 :� supIII2(M i+2Ii ) : m ri+2 :� supIIIi+1: : :(MnIi) : m rn :� supIIIn�1The rules (N1) and (N2) for each ri then ensurethat only those tuples from the rederived set go intornewi that were not deleted or at least were rederived.4.1.4 Rewriting idle checksThe last rule to be looked at in order to provide on-demand access to the old database state is (E1) whichcomputes the net insertions as di�erence between pinsand p. This rule checks whether a tuple derived asto be inserted into pnew in fact was not already inp before, i.e. is not an idle insertion. The check cansimply be realized by adding the following magic rule:(ME1 ) : m p :� pins:This rule guarantees that all idle insertions arecaught by trying to rederive them in the old databasestate.Based on these transformation steps, the completetransformation procedure of a rule into a set of main-tenance rules is given by algorithm 2.Algorithm 2 (The RoD algorithm)Input: A rule of the form (O) : p :� r1; : : : ; rn:Output: A set M 0 of maintenance rules for (O).begingenerate from (O) a rule set M by algorithm 1;M 0 :=M;for i:= 1 to n dofor j:= 1 to n dogenerate from (Di) 2M 0 rules (Dji ) and (M jDi);generate from (Ii) 2M 0 rules (Iji ) and (M jIi);M 0 := M 0 [ f(Dji ); (M jDi); (Iji ); (M jIi)g od;M 0 := M 0 n f(Di); (Ii)g od;for i:= 1 to n dogenerate from (R) 2M rules (Ri) and (M iR);M 0 := M 0 [ f(Ri); (M iR)g od;M 0 := M 0 n f(R)g;generate from (E1) 2M 0 (ME1 );M 0 := M 0 [ f(ME1)g;return M 0end 2Page 7
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maintenance rules generated from R1:(D1) ) closuredel(x; y) :� edgedel(x; y):(R) ) closurered(x; y) :� closuredel(x; y):(I1) ) closureins(x; y) :� edgeins(x; y):(E1) ) closureplus(x; y) :� closureins(x; y); :closure(x; y):m closurebb(x; y) :� closureins(x; y):maintenance rules generated from R2:(D1) ) closuredel(x; y) :� edgedel(x; z); closure(z; y):m closurebf (z) :� edgedel(x; z):(D2) ) closuredel(x; y) :� edge(x; z); closuredel(z; y):(R) ) closurered(x; y) :� supII1 (x; y; z); closurenew(z; y):supII1 (x; y; z) :� closuredel(x; y); edgenew(x; z):m closurebb(z; y) :� supII1 (x; y; z):(I1) ) closureins(x; y) :� edgeins(x; z); closurenew(z; y):m closurebf (z) :� edgeins(x; z):(I2) ) closureins(x; y) :� edgenew(x; z); closureins(z; y):relevant query rules for R1:closure(x; y) :�m closurebf (x); edge(x; y):closure(x; y) : �m closurebb(x; y); edge(x; y):relevant query rules for R2:closure(x; y) :� sup1(x; z); closure(z; y):sup1(x; z) :�m closurebf (x); edge(x; z):m closurebf (z) :� sup1(x; z):closure(x; y) :� sup01(x; y; z); closure(z; y):sup01(x; y; z) :�m closurebb(x; y); edge(x; z):m closurebb(z; y) :� sup01(x; y; z):Figure 3: RoD applied to the graph exampleThe following theorem states that evaluating therewritten rules leads to an exact computation of thedi�erence between two subsequent database states.Theorem 2 Let Sold, Snew, Splus,Sminus be de�nedas in Theorem 1, but now assume that only the ex-tensions of base data relations are available. Then foreach relation p the evaluation of the rules generated byalgorithm 2 in combination with the magic-set rewrit-ten original (query) rules yields the exact positive andnegative di�erentials Splusp and Sminusp as extension ofpplus and pminus. During the evaluation only those tu-ples from Soldp resp. Snewp are (re)derived in p and pnewthat are indispensable for determining the di�erentials.Proof. The proof is given in [17]. 2Example 3 (Applying RoD )Figure 3 shows the resulting rule set of applying RoDto rules R1 and R2, and relevant query rules. Sinceboth original rules have only one or two subgoals, thetransformation of (Di),(R) and (Ii) generates only afew additional magic rules. The other rules remainunchanged. As mentioned above, the magic predicatesare adorned with variable bindings. 24.2 RoD with NegationThe algorithm RoD needs only to be changed slightlyto allow negation in view de�nitions. In addition,the evaluation has to be performed with a slightlychanged control structure that respects strati�cationof the original rule set. The �rst change to RoD con-cerns the e�ect of updates for predicates ri that occurnegatively in a rule (O):(O) : p : � r1; : : : ;:ri; : : : ; rn:

Insertions into ri lead to possible deletions of the rulehead p. Deletions from ri may allow now tuples forp to be derivable that were prevented before by theexistence of certain tuples in ri.A consequence of this observation is a modi�ed gen-eration of the basic maintenance rules (Di) and (Ii) inalgorithm 1 for those ri that occur negatively in (O):(Di) : pdel :� r1; : : : ; ri�1; rinsi ; ri+1; : : : ; rn:(Ii) : pins :� rnew1 ; : : : ; rnewi�1 ; rdeli ; rnewi+1 ; : : : ; rnewn :In the generated rules (Dj) , (Ij) with j 6= i as wellas in (R) the predicate r resp. rnew keeps its negativesign. All other rules handle negated predicates withoutrespecting their signs.From an evaluation point of view, the magic setrewriting with supplementary relations �xes the exe-cution order of joins, in a manner determined by theformulation of the original rules. Due to the commu-tativity of the AND operator, the ordering of literalsand thus the execution order is in principle free andcould be re-organized according to some cost-based op-timization. This freedom becomes restricted in thepresence of negation, as negation leads to a combina-tion of joins and set di�erences in the implementation.Safeness of rules restricts variables occuring innegated literals to be bound in a positive predicate.Only then, there always exists some order for join com-putation such that joins with relations refered to bynegated predicates can be performed straightforwardby standard set di�erence. Hence, r( ~X; ~Y ) 1 : s(~Y )is evaluated by (Q~Y r( ~X; ~Y )ns(~Y )) 1 r( ~X; ~Y ), i.e. ris projected onto the columns of s, the di�erence be-tween the result and s is computed and joined with r.Of course, the arguments of s must be a subset fromthose of r.In our approach, the ordering is determined for thetransformation of (Di) and (Ii) by the position of thebody predicate ri respectively its delta variant rdeli andrinsi . From there the join sequence is built up to theleft and right. As in the general case, negated predi-cates have to be moved such that the transformationdoesn't destroy the applicability of joins. In our case,we could simply move all negated predicates to theright. After processing the positive literals7 and join-ing both sequences together (rules (Dii) and (I ii )), thenegative literals are processed from left to right by cor-responding joins with ordinary set di�erence8.The third speci�c aspect for handling negation isevaluation control. The solution is straightforward:7Note, that we don't have to deal with negated deltapredicates.8Another solution would be to give up the idea of propagatingbindings starting from the delta literal to both sides and to movethe delta literal to the beginning of the body literal sequence asit is already when transforming rule R. Then we have the samesituation as with standard magic-set. Page 8
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the original rule set is partitioned into strata with re-spect to their head predicates: if a rule calls a predi-cate negatively then the de�ning rules for that predi-cate belong to a lower stratum. The view maintenanceprocess then starts with the lowest stratum and com-putes the net insertions pplus and net deletions pminusof its de�ned predicates p. At the next layer, thesepredicates are handled like extensional predicates andtheir update relations pins and pdel are initialized withthe just derived net updates. One e�ect of this initial-ization is the prevention of phantom insertions. Eachlayer only has to deal with the maintenance rules gen-erated for its own rules. One accompanying additionalstep for RoD is therefore to generate rules (N 0i) and(N 00i ) not only for extensional body predicates but alsofor predicates belonging to lower strata.4.3 Evaluation without Access to ViewCachesThe layered view maintenance process and its inter-play with query evaluation for rederiving the relevantparts of the old database state are summarized by al-gorithm 3. This algorithm employs the notion of anenvironment ENV as a mapping from predicate sym-bols to sets of tuples that represent a partial databasestate. This state is the subset of the overall EDB andIDB contents which needs to be looked at for main-taining the views of interest. The rule sets M and Qdenote the rewritten rules used for view maintenanceand query evaluation, respectively. Recall that we as-sume Q to be derived from the original rules by stan-dard supplementary magic-set rewriting (with respectto all possible binding patterns) such that the link be-tween both rule sets is provided by the magic rulesgenerated by RoD. Whereas EDB and IDB denote theextensional and intensional predicates as before, SUPcontains all delta, supplementary and magic predicatesintroduced for M and Q. Each p 2 EDB [ IDB hasa unique stratum number S(p) between 0 and someconstant m. In addition we de�ne M (n) as the set ofrules r 2 M such that r is based on an original rulede�ning a predicate p 2 EDB [ IDB with S(p) = n.The algorithm assumes EVAL to be a �xpoint eval-uator that works on a strati�ed set of rules and an evi-ronment with initializations for the relations involved.EVAL respects the changes of the environment pro-duced during the preceding evaluation in a semi-naivemanner and returns its with additional tuples insertedfor certain relations. When called for evaluating themaintenance rules EVAL only has to process the sub-set M (i) for a given stratum i of the original rule set.The second call with Q, however, is exactly as for eval-uating an arbitrary query but now on a partially ma-terialized intensional database state. The new tuples

for the magic predicates generated in the �rst call ofEVAL denote queries that have to be answered in orderto continue the maintenance process. These queriesmay have to rederive tuples for predicates from lowerstrata that were not rederived before since they werenot needed. Therefore, EVAL is called with the com-plete set of query rules Q.Algorithm 3 (View maintenance procedure)Input: 1. A set of query rules Q2. A set of maintenance rules M3. A set of view names V = fv1; : : : ; vng4. A set of base data changesOutput: changes to the views in Vbeginfor r 2 IDB [ SUP doinitialize ENV [r] := ; od;for r 2 EDB doinitialize ENV [rdel] and ENV [rins] with thebase data changes;initialize ENV [r] with the old extensionof r od;for i := 1 to m dorepeatOLD := ENV ;ENV := EVAL(ENV;M (i));ENV := EVAL(ENV;Q)until ENV = OLD;for r 2 IDB with S(r) = i doENV [rins] := ENV [rplus];ENV [rdel] := ENV [rminus] od od;MOD := [(ENV [vplus1 ]; ENV [vminus1 ]); : : : ;(ENV [vplusn ]; ENV [vminusn ])];return(MOD)end 2Example 4 (View maintenance for the graph exam-ple)If we apply algorithm 3 to the graph example inorder to maintain closure, the rules shown in �gure 3and the base data updates (edgedel(b; c),edgeins(h; d))serve as input. Since no negation occurs in the origi-nal rules, the evaluation enters the repeat/until looponly once. Query rules can be evaluated without strat-i�cation, too. In contrast to the evaluation trace forthe maintenance rules in example 2, closure now doesnot belong to stratum S0 but to S1 together with thenew predicates supII1 and m closurebf . m closurebbgoes into S2 since it depends on closureins. With-out demonstrating the complete evaluation it can bestated that exactly the relevant part of closure thatrepresents the complement of subgraph G0 in section2.2 is rederived. 25 View Monitoring in ConceptBaseConceptBase [7] is a deductive object manager formeta data management which supports the O-TelosPage 9
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&Figure 4: The ConceptBase server architectureobject model [12]. Textual and graphical user interfacetools are linked to ConceptBase servers as clients overthe Internet. We therefore experienced the problemsaddressed in this paper since the �rst uses of Concept-Base as an Internet-based cooperative modeling toolin the late 1980's.An O-Telos object base is semantically equivalent toa deductive database (Datalog with negation) whichincludes a prede�ned set of rules and integrity con-straints coding the object structure. The surface lan-guage syntax is frame-based or uses semantic net-works. Rules and integrity constraints are includedas �rst-order formulas de�ned over a basic set of pred-icates describing the abstraction principles of instan-tiation, specialization and attribution.The ConceptBase server architecture [7] is shownin �gure 4. The RoD algorithm 2 is part of the Con-ceptBase Query/Rule-Compiler component while al-gorithm 3 constitutes the ViewMonitor.Figure 5 demonstrates the incremental view main-tenance process for an example database of soft-ware modules, with three classes Module,Procedureand OperatingSystem. Procedures are defined inmodules and modules import procedures; they maydepend on particular operating systems.Views and queries in ConceptBase are speci�ed asclasses of derived data (keywords QueryClass, View)with necessary and su�cient membership constraints[19]. A view ModuleDependency links (based on)modules with those other modules from which they di-rectly or indirectly (via transitive closure) import pro-cedures. A second view IllegalOS maintains viola-tions of an integrity constraint. It describes incompat-ible based on relationships which contain proceduresthat have a depend on link to di�erent operating sys-tems.The Query/Rule-Compiler of ConceptBase mapsboth view de�nitions to intensional relations mod depand ill os de�ned by deductive rules as follows:

mod dep(x; y) :� module(x);module(y); procedure(p)import(x; p); defined in(p; y):mod dep(x; y) :� mod dep(x; z);mod dep(z; y):ill os(x; y; z) :� mod dep(x; y);mod dep(x; z);op sys(o1); op sys(o2); procedure(p1);procedure(p2); unequal(o1; o2);defined in(p1; y);defined in(p2; z);depend on(o1); depend on(o2):The ViewMonitor works on such an internal rep-resentation of views, queries and rules and providesnoti�cation messages to those applications a�ected in-directly by updates of others. Integrity views likeIllegalOS do not necessarily lead to rejections of up-dates if their extension becomes non-empty.In �gure 5, the left graph browser application dis-plays the contents of the view ModuleDependencybased on the current extensional database state (dis-played by the browser at the top). The right graph-browser window shows the extension of IllegalOS.A check-in of some source module had the e�ectof introducing a new import link between module Aand procedure time which leads to an operating sys-tem con
ict with directory de�ned in module C onwhich A is based, too. This update also induced abased on link between A and E in ModuleDependency.Both changes have already been noti�ed to the graph-ical displays (number tag 2).A second update is caused by a new module D whichimports a procedure diff from A (number tag 3). Bothexternally materialized views have to be updated byinserting based on links between D and the other mod-ules into ModuleDependency, and by inserting D to-gether with A and E into IllegalOS.To get a feeling for the performance impact of theapproach, the following table compares response timesfor complete recomputation of views and incremen-tal maintenance with RoD with respect to a databasethat contained descriptions of 283 modules with 1630exported procedures. The update operation was annewly inserted import link from a module to a proce-dure. The results indicate signi�cant advantages forRoD in complex, recursive view de�nitions and almostno di�erence for simple ones.View recomp. incr.All modules M is based on1 together with all directly or 25 sec 4.5 secindirectly imported procedures2 All procedures with a given 0.3 sec 0.25 secname pre�x imported by M3 All procedures imported by M 4.5 sec 0.3 secwith less than 10 lines of code4 All procedures with a givenname imported by M directly 4.4 sec 0.5 secor indirectly Page 10
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Figure 5: View monitoring in ConceptBase: an exampleAnother case where RoD proved very bene�cial isthe parallel maintenance of many views or integrityconstraints, e.g. in design applications. As alreadysuggested a decade ago [16], presenting violations inintegrity views [19] is preferable to just rejecting up-dates not only because of better explanation but alsobecause it enables multiple levels of integrity enforce-ment. For example, in a commercial application ofConceptBase [14], a business process analysis is mon-itored by more than 80 integrity views. While allof them need to be monitored continuously, they arereacted to at di�erent periods in the analysis pro-cess. Corrections in one view may indirectly correctother violations, or cause new ones. In such a set-ting, non-incremental view maintenance may becomeprohibitively expensive.6 Discussion and OutlookSince the early papers [20, 1, 13, 15], the incrementalmaintenance of views has received a lot of attentionin database research. The recent survey [5] is orga-nized mostly according to the amount of informationavailable to the maintenance tool. In the case of fullinformation which we discussed in section 3, the basedata, the materialized view, and the derivation rulecan all be used.Among the many conceivable cases of partial infor-mation, interest has focused on maintenance at theclient side. In self-maintainable views, the view de�-nition is so simple that all the consequences of a base-

data change can be locally computed by the client,without accessing the base data [4].Driven by our goal of o�ering a standard monitoringservice for non-database clients, we mainly focused ona solution for the opposite case : The maintenancetool has access to the base data and the view de�nitionbut not to the materialized view. Though this may at�rst sound contradictory to the idea of materializationand has therefore hardly been studied, we argued thatthere will be many uses of such a service, includingquite traditional ones such as integrity checking or userinterface management.Our solution extends known algorithms for the caseof full information by a magic-set like rewriting ofthe generated maintenance rules such that the rele-vant parts of the externally materialized views can berederived in the database on demand. As a prereq-uisite to the magic set transformation, the known al-gorithms had to be changed slightly such that theygenerate a pure strati�ed Datalog program of main-tenance rules. We showed that during the evaluationphase the magic maintenance predicates created byour approach interoperate nicely with the magic queryevaluation rules created when initially computing theexternal view materialization.Finally, we summarized the implementation of ourapproach in ConceptBase, a deductive object managerfor meta data management. Based on this implemen-tation, some practical experience has been gained with
exible integrity maintenance in design applications.Page 11
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